DEFINITION Linear Independence of Two Functions

Two functions defined on an open interval I are said to be linearly independent on I provided that neither is a constant multiple of the other.

Two functions are said to be **linearly dependent** on an open interval provided that they are not linearly independent there; that is, one of them is a constant multiple of the other. We can always determine whether two given functions f and g are linearly dependent on an interval I by noting at a glance whether either of the two quotients f/g or g/f is a constant-valued function on I.

Example 3

Thus it is clear that the following pairs of functions are linearly independent on the entire real line:

$$\sin x$$
 and $\cos x$;
 e^x and e^{-2x} ;
 e^x and xe^x ;
 $x + 1$ and x^2 ;
 x and $|x|$.

near Equations of Higher Order

tunctions linearly dependent on every interval, because $0 \cdot g(x) = 0 = f(x)$. Also, the forth. But the identically zero function f(x) = 0 and any other function g are function; neither $e^x/e^{-2x} = e^{3x}$ nor e^{-2x}/e^x is a constant-valued function; and so That is, neither $\sin x/\cos x = \tan x$ nor $\cos x/\sin x = \cot x$ is a constant-valued

$$f(x) = \sin 2x$$
 and $g(x) = \sin x \cos x$

metric identity $\sin 2x = 2 \sin x \cos x$. are linearly dependent on any interval because f(x) = 2g(x) is the familiar trigono-

the real line. through 26 are linearly independent or linearly dependent on Determine whether the pairs of functions in Problems 20

0.
$$f(x) = \pi$$
, $g(x) = \cos^2 x + \sin^2 x$
1. $f(x) = x^3$, $g(x) = x^2|x|$
2. $f(x) = 1 + x$, $g(x) = 1 + |x|$
23. $f(x) = xe^x$, $g(x) = |x|e^x$
24. $f(x) = \sin^2 x$, $g(x) = 1 - \cos 2x$
25. $f(x) = e^x \sin x$, $g(x) = e^x \cos x$
26. $f(x) = 2\cos x + 3\sin x$, $g(x) = 3\cos x - 2\sin x$