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7.5 LEAST-SQUARLS SOLUTIONS FOHUINCONSISTENT SY5TEMS

yaf ot Biae fuo enleptien

o LYED tf of 12 1Fas dvdpes

PR T aaas

Recall that a svatem of linecar equations 4y ~ A e

. B .
our goal ic to find an ; ApProximate solution 1o the svatem As
such that Av 18 as close to b as pogains,

words, we would hike 1o fing a vector v
fAv - B < [ 4z v o B .
! Az bl forall R This motivates the followmng definition

s s
.
g,

DEFINITION Least-Squares Solution
T omatnix, and b o

Let Ax = ¥ o -
¢t Ax = b be a svstem of linear equations. where 4 1s an #»
ast-squares solution to the system Ax = & §f the 1,7

yector v € R” is said to be ale
condition 18 satisfied:

i 4y B < §

WA - bl] <{iAz - bj forall z: ¢ B
-square solution to zhg system Ax = b if A is the close

In other words, v is a Jeast- o o ;
2710 b i

. = . . i’ M“"‘*‘-—-«W
4 norm mnvolves finding a sum of squares, the inequality

Remark Since calculating
iiAv — bl < |4z - b1l for allz e ®

"

n 1‘;2-»

mmplies that v produces the least possible value for the sum of squares of the differences ;
coordinate between Az and z over all possible vectors z. Thus, 1t justifies the name “leas:- -squares

solution™
The following theorem (proof omitted) enables us to find a least-square solution to the lines
system Ax = b.
d |
E

THEOREM 7.14 LetAx=bbea wstem of linear equations, where A is an m x n matrix_and
"given by W= {Ax :x € R"}. Letv ¢ B, Tbenthé‘

b € R". Let W be the subspace of R”
followmg three conditions are equivalent : s
(a) v is a least-square solution to the system Ax = b. e

(b) v satisfies (ATA)yw=ATh.

(c) v satisfies Av = proj,, b.
Note The avove theorem shows that a least-squares solution to the system 4x b can bc tmmd

i

by solving the linear system (A7A)x=ATb.
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R W, <K& Pl‘(‘\'(.‘ ”l'" ” & e
> I 1 least. o £ 4 edr g
l HE | 3 ()"c"( I ()“”l(\ll ﬂ'll "\l‘ “l\("lf EAE1! ‘ ‘ ”Li ,‘h‘
CHcast-s k Al SVStem Ax = b W‘h‘lt'
A} v X "

2 k] ;'r‘g
4 = N
"' ' ' ) ,} i ”!
4 1 !-I f

satisfies [lAv — b « A4z - b, where = = "!
. | l [Delhi niy, (1.2, 2016, 2‘)]')(,.51,,,11/“ n
, ifie

" v -
L\ * v )h‘ "‘ ' i a ) 3 T . i
= L™ ‘ el v_‘;‘i {.."“.-" r"i e .1'

Now,
) - s T 3 — ‘
Al = P 21 9 A 1 | 4 ;Sx e
J -1 1 19 g and  ATh = |7 0} ?‘f’g
4 I L] 3 i l_l“i f1gl
- . | s 4
Thus, the augmented matrix for the system (AT4)x = ATh is 21 9] 26|
| Lo el

I 0

0 1

23/30
/10|

b/ ~
We now row reduce the augmented matrix to obtain I:

- 23/30
s, v = is the desi et cr . el =a
110/ 1 the desired least-squares solution. We'll now verity that

[|Av — b < ||Az — b, where z = I:IJ

|
-1/6 i
Av—b = |-1/3 = [|Av - b = —Jﬁﬁ
1/6
0
and Az-b = |0 = ||Az - b| =1
I

|[Av — b|| < ||Az - b].
The following example illustrates that the linear system Ax = b may have infinitely many least-squares
solutions. However, all these solutions will produce the same value for Ax.

EXAMPLE 21 Find a least-squares solution to the linear system Ax = b, where

2 3 -
2 -7
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e N To find 4 1a,.. -
e (%) ‘ Cast-sqy,
. ﬂ"” _ATh. Now, Yuare, olug;,
snebra ;-//“X ; R &
i pon 44 4 23' . Dead W g¢ i
AT4 = |4 59 (3\ " tolve the System
d 6 g w19
Lugmented matrix £ i
# he augm alnx for the System (qr L 6|
,,[!'/;‘,‘I)' ﬁ 24 ~d 2% 487 Ajx = ATy, G L 9]
-4 59 _¢ ‘ r
/1 ’I). 28 —_(3 )3 » Whlch l'()w % i 0 ‘} ‘5 i
5 ol & feduec:'smi() - Al
: -1} 6/7
a |
oW reduced echelon form Matrix of 0o ol o
¢ ac infini of t -
%)xg ATh has infinitely many 301U‘i0ns,nle :f} augrpemed matrix shows 1
F n) is an independent variable, Settin h “Id Variable (correspondin &éth:"mc system
o 15 6 & the thir variable equa] to . !.'neg com lﬁmd ‘i““'?ﬁ‘-'fﬁ
s pitte solution L7
' ]S —
S EXERCISET A o
[ Find a least-squares solution to the inconsistent system Ax = b, where
2 0] 1
A=10 1

1
and b={2
; 2| 15

Also, verify that the least-squares solution v satisfies || 4v — bl < | Az — b for the vector
a. . y

Al

1 15t = b, where
). Find a least-squares solution t0 the inconsistent system Ax = b, W

2 1 ‘Z\
_ b=
g4 =|"2 2 and :

) 1

- - bl he veck
e”fy at the 1€ i , — bl € ||A2 bi for t
h least squares solution y satlsﬁes \\A‘ \\
Ares IS,V g thtt .. o

iy

3 Finda 1east-squafesjs9lk .
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ations. rotauons. retze‘ttions and Calmt’\ in the plane ¢an be
? = oceneous coordinates.

Introduction to Computer Graphics

Computer graphics is an ant of drawing pictures on computer screens with the help of programming.
It involves computations. creation and mani puI:x ion of data. In other words. we can say that
compuier graphics 1s @ rendenng ool for the generation and manipulaton of images.

A computer screen consists of 2 collection of tiny. uniformly sized pixels (picture elements or

dots). which are arranged in 2 two-dimensional grid made up of columns and rows, with a single
pixel at the intersection of each row and column.
i

-

£ 36 7 R 91011 jgcneiom

tis

I
1

)

i

< ——= =
I i 1
__ f 0§ ¢ ¢ 8§ 0 3 b o1 9 i 4 1

FIGURE 6.8
The number of pixels, called resolution, affects how much detail can be depicted in an image.

Resolution is ofien expressed as the number of pixelsi in a mw txmes number of p1xels ina column.
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Linear Transformations
_ 65!
For example, a typical 1024 < 768 computer screen would

i 3 3y, y s I]B\/c ()7, e - ‘ g
0’ through “1023”) and 768 pixels in each column (] 1024 pixels in each row (abelad

abeled O throush “7677) (see ¥ o
i A 5 1wwe 6.8 )
Pixels are normally labeled so that the p-coordinates ;i gh I6T7) puwe O.8)
. £1% - ates mcrease as we procecd down @ compuic
screen. In other words, the positive y-axis points “downward” instead 1‘l "l' . 4 511) i
i . L i ' stead of pointing upward. Howeyer,
for practical purposes, we will continue (o draw = coordinat: s: s‘lunE b i ! ] A
it i mting ¢ ¢ usual manuer, wits
the positive y-axis pomting “upward”. ysle ) the usual manner, with
The most common computer graphics technique is ras o ,
tent (text, figure, i p graj h.lC-‘J lechlll(.}llt, 1s raster graphics, in which the current seroen”
Cf)n , higure, icons, etc.) is stored in the memory of the computer snd updated and
dlSplayed whenever a change of screen contents is necessary. '

In m.,s sy:v,lcm, zll simple two-dimensional figure with » vertices can be represented by 2 7 7 4
matrix, with each column of the matrix lists a pair of x-coordinate and y-coordinate representing
different vertex of the figure. '

For example, consider the polygon in Figure 6.9 (a “Knee”) with 6 vertices. We can represent Gns
polygon algebraically by storing its 6 vertices as 6 columns in the folloying 2 # O wisiz

8 8 6 & 10 10
6 8 10 12 10 6

121 (8, 12)

-4

101 (6, 10)% (10, 10)
9.4

81 (8, 8)

74

61 (8, 0) (10, 6)
5._-

4._

J,A

2

]“— - .
0= 34 56 7 & 9101112

FIGURE 6.9

en, the y-coordinate and y-coordin
(hat whenever a figure

ate of new yertices
I8 manipulated

ares! IMEPErs,

figure on the sere
For simplicily, we assume | i |
we round off each x- and y~u1)()|‘t|||1:iitzs to the ne

Whenever we move a given

of the figure may not be integers: L8
(by rotation, reflection, Of scaling), we 10 ! i
naplase i oo

fane to itsell that maves every figure in (he gt

Fundamental V»
- nd related b

NN ing of the PlANE 10 FrE s e ehanet
1: snml(h;l'lfy 15 a)r:z)alt)}?at ﬁle figure and its ,;,tllagc,ar__gsllnglgr'v;n b’!gljg‘;}
igure (t e image) 80 I 8 B e
of sizes. o
It can be shown that

following mappings:

. e e e i
ny similarity can he aceomplished by composing O
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6.52
Litieay A/"( ey

1. Translation : A translation is a mappi ' )
Jranslation : A translation is a mapping that shifts all points of hpare along a givey ety
Rotation : Arotation is a mapping that rotates all points of a figure abont 4 fized point (cale ’
] o

the center of rotation), through a fixed angle 0. Thus, a rotation s « mapping that tugy,
figure around a fixed point.

i

Note Unless otherwise stated, all rotations are assumed to be in a counterclockwise direction in the plage

Reflection : A reflection is a mapping that reflects all points of 4 figure about 2 #iven line
= 4 ol "e,
Thus, a reflection is a mapping that moves a figure by flipping it across the given line,

4. Scaling : A scaling is a mapping that changes the size of a figure by dilating (or contrac ting)
the distance of all points in the figure from a given center point,

Note Each of the first three fundamental movements does not change the shape or size of 4
figure. In other words, it maps a given figure to a congruent figure, Any such map is called an
isometry.

We now discuss how to find the new vertices of a figure, using ordinary coordinates in %%, that
is moved by performing each of the above operations. As we shall see, all translations are
straightforward, but for the last three types of operations, we shall first assume that all movements

are performed “about the origin”.

[ §'u§
1. Translation : To perform a translation of a vertex along a vector lb], we simply add |, 1o
J & J

the vertex.
To perform a rotation of a vertex about the origin, we simply

cos 0 —sin
[sin 0 cosf ]
3. Reflection about a line through the origin : To perform a reflection of a vertex about the
line y = mx, we multiply on the left by the matrix

2. Rotation about the origin :
multiply on the left by the matrix

1 [1-m* 2m

71+m2 2m 1712-—1

Two special cases : : i B
':' .A 7 il -1 i

(a) Line of reflection is the x-axis 10 ~1]
e el

0 1)

(b)  Line of reﬂectzon is. the y~axzs (1.’

TO perfonnvs-calmg about thc orxgm wnh scale
e multiply on the left by the mamx

he
factors ofcint
4. Scalmg from the ongm & _
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Linear Transformations

Note Notice th: . 6.53
o . ‘.IHhC ld'bl three types of mappings (rotation ab - ,
wough the origin, scaling about the origin) are all li B I g s g
I . : arc all lincar transformations . .
performed using matrix e ¢ ansformations and each of these can be
AR 5 d“““ multiplication. However, (non-trivial) translations are not 1i .
ations and cannot be performed using matrix multiplication | T e

EXAMPLE 51 Fortl in Fi )

g 1¢ polygon in Figure 6.9 (a “Knece™), us ' i

o e | ‘ : 9 (¢ , use ordinary coordinates in ®#

the new vertices after performing each indicated operation. ' e o
(a) translation along the vector [12, 6]

(b) rotation about the origin through 0 = 90°

(c) reflection about the line y = -3x

(d) scaling about the origin with scale factors of 1/2 in the x-direction and 4 in the y-direction.

SOLUTION (a) To perform a translation of a vertex along the vector [12, 6], we simply add

12 12
6| 10 the vertex. Thus, adding { 6

LTI Lo

Hence, new vertices of the polygon after performing translation are
(20, 12), (20, 14), (18, 16), (20, 18), (22, 16), (22, 12)

:\ to each of the vertices of the given polygon, we obtain

-

X
b) A rotation of (x, y) about the origin through the angle 0=90° canbe accomplished by multiplying {‘j

on the left by the matrix
cos 90° —sin 901 _ ‘:0 '1]
sin 90°  cos 90° 1 0

0 -l
6 . :
For example, multiplying the vertex LO] on the left by the mafrix L 0} yields

o -1 6 [—10]
1 ollio] L 6
er new vertices.

. n all vertices
lso be obtained di -

Similarly, we can find oth
Note that the new yertices can @

' imultaneously. _ - obtai
opR e he rotation on all vertices of the ﬁgtlre_s1m111tanc011§ly, we obtain
g the rota : R = :

e o
B8 6.0 10 10 };-{fe.A‘-s -10 -12 112 10}
[1 0} [5 g 10 12 10 6 _T.A‘j“,S.Tlgﬁ. 6  8 01

rectly by performing the rotation o

Thus, performin

3 : X
U ERal L s e left by
ik g s i e bR 3 1ymg{ ’i\ Qnthe
,, i s g o be cbtained by UlUPIYINg |y |
1 f(lca}’) aboutthc hr-l.e'y S R i Py AT R
(c) Areflection © SR SR S

the matrix
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Linear Ajgep,

1 ] ~ lH: ’/”. -
(U - ' | ) 0 ~4/5 -y ‘;-
L4 m” 5 2 , S
| amomT - 149 -6 9} “3/5  4/5

Performin s reflecti -
£ the reflection on all vertices of the . ¥
cruces of the polygon hllﬂll“:llk‘ﬂllSly, we obtain

{—4/5 =3/51 8 8 6 8 10 10

=3/5 4/5] 06 8 10 12 10 6

(<10 =13 —11 14 -—14 -12

0 ’ 4 5 2 (roumlingmlhcncnrcslinleg r)
i g¢

U

(d) A scaling of (x, v) about the origin by a factor of ¢ = 1/2 in the x-direction and = 4 5
- =410n the

2 4 » ' ~ 2 : . . ‘ 2
y-direction can be accomplished by multiplying L} on the left by the matrix [” 0]
: L0 4
L

Performing the scaling on all vertices of the polygon simultancously, we obtain
/2 0]1[8 8 6 8 10 10 4 4 3 4 5 5
[ 0 4J [6 8 10 12 10 a] - [24 3240 48 40 24]-
Homogeneous Coordinates
We have already seen that the following three mappings
(a) rotation about the origin,
(b) reflection about the line through the origin, and

(c) scaling with the origin as center

are all linear transformations and can all be performed using matrix multiplications. Unfortunately,
(non-trivial) translations are not linear transformations and they can not be performed using matrix
multiplication. Our purpose now is to represent all these transformations in a consistent way so
that they can be combined easily. This can be achieved by introducing a different type of coordinate
system taken from projective geometry, called homogeneous coordinates.

In homogeneous coordinates, we add a third coordinate to a point. Instead of being represented by
a two-dimensional point (x, y), each point is represented by a three-dimensional point (x, y, 1). We
define any three-dimensional point of the form (¢x, 1y, t) = t(x, y, 1), where 1 # 0, to be equivalent
to the ordinary two-dimensional point (x, y). Thus, for each two-dimensional point (x, y), there lsl
an infinite set of homogeneous coordmates (tx, 1y, t), (1 # 0) in three- dimensional that are al
equivalent to (x, y). For example, the pomts (2 3 l), 4,6, 2)=2(2,3,and (6,93)= 3(|~z,ed.
1) are all equivalent to (2; 3). A pomt m homogeneous coordmates is said to be in normall

ormalized
form if its last coordinate is 1. Notice that any pomt in homogeneous coordinates can be n

jonal
ividing all three coordmates of : a tnple by 1ts last coordmate Thus, each two-dimenst

simply by 4 be its standard

point has a unique set of normahzed homogenoous coordmates whnch is said to

form, For example, the points (15 9'6 (10 —6 4) and (5/2 —-3/2 1) are al

coordmatf:s for the Iwo-dlmcnsmnal pomt (5i2 in :_thch xts standard form is (5/2

| homogeneous
""3/29 ])'
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_ Vements i
Coordinates S Wwith Matrix Multiplicatlon in -

Translation : T, translate v

. crte .
cquivalent vector [y, y, 11inh X (X, ) alon

ga givcn vect
0

. [al ,) [} WC
ordinates. T ]

first rcp]aCe (x. V) with i
] lth 3
hen, we multip PO IS

Lo . ly on the left by the matrix
0 1 p

0 0 1
This gives

l 0 a X X+a
0 1 b y| =|y+b
which 1s equivalent to the two-dimensional point (x + ¢

,

Y+ b), as desired.

Rotatior : To rotate vertex (x, ») about the origin through angle 0, we multiply its equivalent

vector [x, , 1] in homogeneous coordinates on the left by the matrix

cosf —sin0 0
sin® cos® 0

0 0 1
This gives |
cosO —sinb Of|x xcosO— ysin0
sin® cos® Of|y = | xsinB+ ycos@ |,
0 0 1f|1 ]

which is equivalent to the two-dimensional point (x cos® — y sin6, x sin® + y cos 9), as desired.

Reflecion : A reflection of (x, y) about the line y = mx can be accomplished by multiplying [x, y, 1]

on the left by the matrix

- T

1—m* 2m 0

L om m* 1 0
2 2
L+ 0 0 1+m

bout the y-axis can be accomplished by multiplying on the left by the
na i e

In particular, a reflectio

matrix - i .0‘ .

oo .
Cas oD ST IS B R e e e and i the
s Aok f (x y) about the;orig_in;.bY;a;;,f‘_ag__tor, of ¢ in the x_'dg-gctlon a
Scaling : A scaling 08 1 -~ |

" accomplished by multiplying {x., 1] on the left by e BOES

y-direction

Scanned with CamScanner
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Lineav 4 fpeky i
! [

-
-
-
-
—
- Mﬁquwmﬂ

R i

. Tyt ¥ : 2
Note Notice that mulplyving a 3 = matrix A by any two sectors of the fonm 1y o 11 ¢
PERY P voo g ‘,- ¢ ¢

[¢ = O] equivalent to (v, ) alway A
R aves praduces tweo results at By @ 0 7
‘ l ‘ WO 1% ”h ‘ Ih"{ are {1,;1,;:, Aient an ?‘(G’»?fit_v-}:rr.,. o

coordimates. This follows from the fac
. ¢ fag atl . ; 4 : g .
€ that Wy matnex A andd any sector v (of canriigmtihle o)

We 'I.‘I\"t‘ ‘(I") f(,“\'). t“" any f\(.\:lli” I3

Movements Not Centered at the Origin : Similarity Method

We now determine the matrices for rotations, reflections, and scaling that are not centered 4
~ o1t A { N .y : cr e . ot ) < atl 4arc naol Cenleres abvee |
the origin using a method, called the Similarity Method. This method nvolves combinm evey E
E Taas )";' w [

{

I3
Wy
i

i

franslation matrices wit « matrices for origin-center : f
h the matrices for origin-centered rotations, reflections and sc

VY W K 4
4 e
4 a

% K

Wity

1

Similarity Method
Step 1. Usc a translation to move the figure so that the rotation, reflection or scaling 1o e
performed is “about the origin”. This means for rotation or scaling about fl r,
o< AR @ pRiu |

e T

(r: &) = (0, 0). we first apply the translation that takes (2 s) to (0, 0), and for reflection

y |
tyhan

about the line v = mx + b, we vertically translate the planc down b units so that the line |
v BA e {

H
3
%

of reflection goes through the origin.

Step 2. Perform the desired rotation, reflection, or scaling “about the origin™. '-,
Step 3. Apply the reverse translation to get the altered figure back to the original figure,

Method requires the composition of three movements and hence

Note Notice that the Similarity
f the corresponding matrices for the individual

it can be accomplished by taking the product o
mappings in reverse order (Theorem 6.8)
For example, a rotation about center (r, s) # (0, 0) through angle 0 can be accomplished by the

matrix product
1 0 r cos® —-sin® 0 |1 0 -r

0O 1 s sin® cos® 0|0 1 -—s
0o 0 1 0 o 11to 0 1

\__‘V_———J N I P
translate from rotate about(0, 0) translate from
(0, 0) back to (r,8) through angle 0 (r, s) 10 (0, 0)

.

atrix for the

multiplying the m
ach

ously on multiple points by ‘
oordinates fore

A similarity can be performed simultane
ent the normalized homogencous ¢

similarity by a matrix whose columns repres

point.

“Knee”),use i,ll’dmogenemls coordinates 10 fmdf
the point ( 5) = (12, 6) through &0 angle €

EXAMPLE 52 For the polygon in Figure 6.9 (2
rotation about: | |
Hhat this movement.

the new vertices after performing-a.

0 < 90°. Then sketch the final figure that would result from
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o » tay "’ ! J.'( "v 1
SOLUTION To find new vertices, we first replace cach (x, y) with its equivalent e

) L & iy Method.
in homogeneous coordinates and then follow the three steps of the Similarity Method
Step 1. We first apply the translation that takes (12. 6) to (0, 0) in order 1o establish the onigin as
center. The matrix for this npcrmmn 1%

[} 0 -]
101 -6
[0 o 1J

Step 2. The second step is 1o perform the rotation through angle 90° about the origin. The matri
for this operation is

[cos 90° —sin 90° 07 [0 -1 0]
| Sin90°  cos90 0| =1 0 0
\L 0 0 1y 0 0 1]

Step 3. Finally. we apply the reverse translation that takes (0, 0) back to (12, 6). The matnx -
this operation is

12

1 center of
6t rotation

o(12.6)
(12.4)

(12.2)
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o Nevre 41,
! s ¥ 1 e " ) . ; Ly
AL ”‘1"7 K 8 & % 0 Wi 12 o g g 8 i e
{ 1 1] (b?}ﬁ b1 Jiy e 1O I‘(j : ¥ L L T ‘ ij
; i P ) o
(00 Lipnr i ! i L S LI \
The co . e B ’ l
~lu columns of thy tinal matris UEnoing the last vowe enres) #rve the YETtiea g '
tigure, as shown in Fignie 610 the o T
- . » - & '
ENXAMPLE 83 {ige homogencons Contdimmtes o find new vertices of the "Honea” (p
0.9) atter pertforming a re |

"ftf;“
10 Then sketch the fing ¢ e
o Woire o

fHection about the line ) Yy o
would vesult from this movement.

SOLUTION  As betore, we first replace (4,

R VEWih s equivalent vector {x, i
Stmularity Method,

Son i
¢ ‘-”t?i(»&

Step 1. The fiest step is to apply the translation «o that the line y = -3x + 39 ROES th
. 8 T o « achiaua ‘ ) ‘ ; WS rougas, "
origin, This can be achieved by performing the ranslation that takes (0, 305y, ( i
matrix for this operation is Ty
1 0 o
0 1 =30
0 0 1

Step 2. We next pertform a reflection about the corresponding line v = -3¢, The Matrix £, .
il

operation is

| 1-(=3)"  2(-3) 0 178 =00
———  2(=3) (=3)*-1 Ol=—}-6 § g
[+(=3)° | 10 |
0 0 1+(=3)? 0 0 10]

Step 3. Finally, we apply the reverse translation that takes (0, 0) back to (0

» 30). The matrix g,
this operation 1s :

1 0 0
0 1 30
0 0 1

The combined result of these operations 1s

1 0 0][-8 -6 Of[1 0 0 ‘ -3 -6 1807f
2 0 1 30]|-6 8 0[{0 1 =30} = T -6 8 &0
o]

0 0 0 1| 0 0 10/|0 0O 1 0 0 10

Performing the reflection on all vertices of the figure simultaneously, we obtain

-6 180778 8 6 8 10 10] [§7 744°

©8 60[{6 8 10 12 10 6|=~|6 8§ 10 ré
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Linear Transfo

dSrmMations £3%
after n s . ,
_ ounding the results for cach vertex 1o the neares: mitgen Tk cokunns of the final matm
(1gnoring th P N y # a
£ ¢ last entries 5) give the vertices of the refloctad § Qure, as shown m Figure 6.1 1. Nooce

that the e is shiohs . o .
the figure is shightly distorted because of the rounding iavolved.

A,

.

et
ra
L
1

ol

£y
.
Y rofiocton
3 yy=-3v=30
‘-

=]
y

12343567 *-ev‘b:;s‘

-

FIGURE b..‘H
EXAMPLE 34 Use homogencous coordinaies w0 find the now vernes of the Ko™ (Refer o
Figure 6.9) after performing scaling about (8, 10) with a factor of o= 1.2 In the x-direcoon and
d =4 in the y-direction.

SOLUTION Following the procedure similar 1 Exampios 30 and 3L it can be chackad tat e
matrix for the desired scaling is the product of the following theee T TR

2 0 9171 © -a‘
0 4 00 1 -1

0o 0 tioo 1

- - =l

'-L_‘HM-.‘M.VM_..'

1

N
P
4

—
--JCv

S
|0
oo

!

/2 0 3

]
This reduces 10 0 4 =30 i
| 00 1]

Scaling all vertices of the figure smauitanmusi}: we &mn
S 5k

2 B~ o= = & - S S‘
:Ti"’ 0 3148 § 7 & :
{ 00 .. i;ﬁ;" Lt .

15 she Q&ﬁﬂé '
; wmm mv the \W\*\ o :
The columms of the final matrix UM‘M ﬁre m oW } e ax‘t\‘ﬂ&.&"\ ,

figure, as shown in Figure 6.12. Notice that we atﬁ& wmm \Wlﬁ\* m@w i
nee would not be dxsp},aved on ﬂ}e u T

and he
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0.60 .
tneqgp Alg@b;«q

(7, 18)

14 Center of
13 scaling

10+ (6, 10) $(8.10)

671 (7, ~6)8—e (8, —6)

FIGURE 6.12

EXAMPLE 55 For the graphic figure below, use homogeneous coordinates to find the neyw
vertices after performing a scaling about the point (3, 3) with scale factors of 3 in the x-direction

and 2 in the y-direction. Then sketch the final figure that would result from this movement :
[Delhi Univ. GE-2,2019]

8+
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Lincar ‘l)‘am.\jfe‘n'mun‘:m.\'

SOLUTION

To ling newy
m homog

cneouy ¢

vertip

vordinggey and thep

Step 1 We firg apply the

CR, W

ranslation that takeg

6.61

ntvector [y, ¥l
arity Method,

¢ irst replace gyely (x, y

) with g cquivale
the three

ollow e ' Simi
W Steps of the Simil

(3310 (0,0) in ordey 1o ¢stabj igi
- b : ' ’ cstablish the as the
center. The matrix o this operation j lish the origin as the
10y
0 % 43
00
Step 2 The second step s (o perform

x-direction and 2

Step 3 Finally, we apply the reverse
operation is

in the y-direction, T

@ scaling aboyg 0, 0
matrix for thig Operatio
J 0o
0 2 0
0«01

)} with scale factors of 3 in the

he n is

translation that (akes (0, 0) back to (3, 3). The matrix for this

-

1 0 3
0 1 3
0 0 1
A
: 4(0, 7 9,7)
6-
5..
N (15.3)
e B
2.
il . et b
BEEREREERERY. SRR
"“Tw. ----- ) (9, 1)
i S
FIGURE 6.14
The combined result of these‘ operatlvons_’:vlis‘ - | : .::_.6 .
105433 OO s
0 1310 2 0} o
0 0 1]lo 0.1 ol
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0.62
Linear 4
b JRL . . ~ . gebr
Performing the operation of scaling on all vectors of the figure simultaneously, we get )
30 -6)[2 2 5 7 5 00915 9
0 2 3155 3 1|=|-17.7 3 -
0O 0 Iyf1r 11 11 111 1 1

The columns of the final matrix (ignoring the last rows entries) give the vertices of th

< sn e e

tigure, as shown in Figure 6.14. Two of the scaled vertices have negative Y coordinates andS}:aled
’ ence

would not be displayed on the computer screen.

Composition of Movements
Since every movement in homogeneous coordinates can be represented by a matrix multipj
o Icatj
the composition of movements can also be represented by a matrix multiplication in homoge ity
nieoug

coordinates.

EXAMPLE 56 Use the similarity method to show that a rotation about the point (1,-1) thro
an angle 6 = 90°, followed by a reflection about the line x = 1 is represented by the matrix e

0 1 2
1 0 -2 Do
0 0 I [Delhi Univ. GE-2, 2017)

SOLUTION We first replace each (x, y) with its vector [x, y, 1] in homogeneous coordinates ang
follow the Similarity Method.

Step 1. We first apply the translation that takes (1, —1) to (0, 0) in order to establish the origin as
1 0 -1
center. The matrix of this operationis [0 1 1
00 1]
Step 2. We next perform a rotation through angle 6 = 90° about origin. The matrix of this operation is
cos90° —sin90° 0 0 -1 0
sin90° cos90° O0[=|1 0 O

0 0 1| (0 0 1

Step 3. We then apply the reverse translation that takes (0, 0) back to (1, -1). The matrix of this

1 0 1
operationis [0 1 -1
0 0 1

le
So, the net effect of these 3 operations is to rotate each vertex about (1, 1) through an 312

6 = 90°. The combined result of these operations is :
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Lincar Transformations
O 1 <t{{t o ollo 1
00 e 0 afe 0

Next, observe
serve that the line v = 1 is parallel to y-ax

tollow the S '
is which nass
lmllumy Method. s which passes through (1, 0). As betore, v
o * Fo SN ) “~. N

- p . \ L« ‘ . . SO k A l - lilh [“JUlK

I 0 -1
this operationis |0 1 U"
. 0 0 1
Step 2. We perform a reflection ubo{ll the line x = 0 (i.e., y-axis). The matrix of thi
0 o h . 1atrix of this operation is
0 10
0 0 1

o1
Tn fyec . \
Step 3. We translate from (0, 0) back to (1, 0). The matrix of this operation is ‘\0 1 Dl_
0 0 1

The combined result of these operations is :

10 11[-1 0 o]f1 0 -
o1 0 0 1 0{|0 1 0
o 0o 1jL oo 1fjoo !

Thus, the matrix for the given composition is the product of the following Six matrices:

101—100710-1
0o 10 o 1 0/l0o 1 0
0o 0.1

o 11{0o -1 0 1 0 -l \‘012‘\\
2

1
o 1 <1l o offo vo=1t0
00 1/lo o 1o 0 1 ooxx

0o 0 1][0 0 !

in Figure 69(@° ‘Knee™), use homogeneous coordinates 10 find

EXAMPLE 57 For the polygon
the new vertices after performing the following sequence of operations :
A rotation about (8, 10) through 8= 300°, followed by a reflection about the hne y=(U2xt 20
SOLUTION The matrix for the indicated rotation is

{ 0 8]/[cos300° _gin300° 01{1 © =]

1o 1 10} sin300° - cos300 0|0 1 -10 X

o 0t o oo 1

The matrix for the indicated rcﬂectlon ig. s ] e
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Linear dlgehyy

6.66

7T {10, 6} TS
6+ (6, B) /_/'“ -
54 g
o | (8,4 //
21 (14, )
l i M x i 2 2 L 3 3 b v - - f l 1‘ ¢ : ; ‘k ’
0= 173 56 78 010111213141516171819
. FIGURE 6.17
124

— —
[ T
bl
L

(11.4)

[
9 -4~
LS TS
o B
I
(=08 9

FIGURE 6.18
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