E-Materials (II)

Course Name: B.Sc.(H) Mathematics (II Year, IV Semester)

Paper Name: Partial Differential Equations

Faculty Name: Mahendra Ram

Canonical Form (Continue)

(A) Hyperbolic Type

If $B^2 - 4AC > 0$, then integration of equations (4.2.5) and (4.2.6) yield two real and distinct families of characteristics. Equation (4.1.11) reduces

$$u_{\xi\eta}=H_1, \qquad (4.2.7)$$

where $H_1 = H^*/B^*$. It can be easily shown that $B^* \neq 0$. This form is called the first canonical form of the hyperbolic equation.

Now if new independent variables

$$\alpha = \xi + \eta, \qquad \beta = \xi - \eta, \tag{4.2.8}$$

are introduced, then equation (4.2.7) is transformed into

$$u_{\alpha\alpha} - u_{\beta\beta} = H_2(\alpha, \beta, u, u_{\alpha}, u_{\beta})$$
 (4.2.9)

This form is called the second canonical form of the hyperbolic equation.

(B) Parabolic Type

In this case, we have $B^2 - 4AC = 0$, and equations (4.2.5) and (4.2.6) coincide. Thus, there exists one real family of characteristics, and we obtain only a single integral $\xi = \text{constant}$ (or $\eta = \text{constant}$). Since $B^2 = 4AC$ and $A^* = 0$, we find that

$$A^* = A\xi_x^2 + B\xi_x\xi_y + C\xi_y^2 = \left(\sqrt{A}\xi_x + \sqrt{C}\xi_y\right)^2 = 0.$$

From this it follows that

$$A^* = 2A\xi_x\eta_x + B(\xi_x\eta_y + \xi_y\eta_x) + 2C\xi_y\eta_y$$

= $2\left(\sqrt{A}\xi_x + \sqrt{C}\xi_y\right)\left(\sqrt{A}\eta_x + \sqrt{C}\eta_y\right) = 0,$

for arbitrary values of $\eta(x,y)$ which is functionally independent of $\xi(x,y)$; for instance, if $\eta = y$, the Jacobian does not vanish in the domain of parabolicity.

Division of equation (4.1.11) by C^{\bullet} yields

$$u_{\eta\eta} = H_3(\xi, \eta, u, u_{\xi}, u_{\eta}), \quad C^* \neq 0.$$
 (4.2.10)

This is called the canonical form of the parabolic equation.

Equation (4.1.11) may also assume the form

$$u_{\xi\xi} = H_3^* (\xi, \eta, u, u_{\xi}, u_{\eta}),$$
 (4.2.11)

if we choose $\eta = \text{constant}$ as the integral of equation (4.2.5).

(C) Elliptic Type

For an equation of elliptic type, we have $B^2 - 4AC < 0$. Consequently, the quadratic equation (4.2.4) has no real solutions, but it has two complex conjugate solutions which are continuous complex-valued functions of the

real variables x and y. Thus, in this case, there are no real characteristic curves. However, if the coefficients A, B, and C are analytic functions of x and y, then one can consider equation (4.2.4) for complex x and y. A function of two real variables x and y is said to be analytic in a certain domain if in some neighborhood of every point (x_0, y_0) of this domain, the

function can be represented as a Taylor series in the variables $(x - x_0)$ and $(y - y_0)$.

Since ξ and η are complex, we introduce new real variables

$$\alpha = \frac{1}{2}(\xi + \eta), \qquad \beta = \frac{1}{2i}(\xi - \eta), \qquad (4.2.12)$$

so that

$$\xi = \alpha + i\beta, \qquad \eta = \alpha - i\beta. \tag{4.2.13}$$

First, we transform equations (4.1.10). We then have

$$A^{**}(\alpha,\beta)u_{\alpha\alpha} + B^{**}(\alpha,\beta)u_{\alpha\beta} + C^{**}(\alpha,\beta)u_{\beta\beta} = H_4(\alpha,\beta,u,u_{\alpha},u_{\beta}),$$

$$(4.2.14)$$

in which the coefficients assume the same form as the coefficients in equation (4.1.11). With the use of (4.2.13), the equations $A^* = C^* = 0$ become

$$(A\alpha_x^2 + B\alpha_x\alpha_y + C\alpha_y^2) - (A\beta_x^2 + B\beta_x\beta_y + C\beta_y^2) + i[2A\alpha_x\beta_x + B(\alpha_x\beta_y + \alpha_y\beta_x) + 2C\alpha_y\beta_y] = 0.$$

$$(A\alpha_x^2 + B\alpha_x\alpha_y + C\alpha_y^2) - (A\beta_x^2 + B\beta_x\beta_y + C\beta_y^2) -i \left[2A\alpha_x\beta_x + B(\alpha_x\beta_y + \alpha_y\beta_x) + 2C\alpha_y\beta_y\right] = 0,$$

or,

$$(A^{**}-C^{**})+iB^{**}=0, \qquad (A^{**}-C^{**})-iB^{**}=0.$$

These equations are satisfied if and only if

$$A^{\bullet \bullet} = C^{\bullet \bullet}$$
 and $B^{\bullet \bullet} = 0$.

Hence, equation (4.2.14) transforms into the form

$$A^{**}u_{\alpha\alpha} + A^{**}u_{\beta\beta} = H_4(\alpha, \beta, u, u_{\alpha}, u_{\beta}).$$

Dividing through by A^{**} , we obtain

$$u_{\alpha\alpha} + u_{\beta\beta} = H_5(\alpha, \beta, u, u_{\alpha}, u_{\beta}), \qquad (4.2.15)$$

where $H_5 = (H_4/A^{\bullet \bullet})$. This is called the canonical form of the elliptic equation.

Example 4.2.1. Consider the equation

$$y^2u_{xx}-x^2u_{yy}=0.$$

Here

$$A=y^2, \quad B=0, \quad C=-x^2.$$

Thus,

$$B^2 - 4AC = 4x^2y^2 > 0.$$

The equation is hyperbolic everywhere except on the coordinate axes x = 0 and y = 0. From the characteristic equations (4.2.5) and (4.2.6), we have

$$\frac{dy}{dx} = \frac{x}{y}, \qquad \frac{dy}{dx} = -\frac{x}{y}.$$

After integration of these equations, we obtain

$$\frac{1}{2}y^2 - \frac{1}{2}x^2 = c_1, \qquad \frac{1}{2}y^2 + \frac{1}{2}x^2 = c_2.$$

The first of these curves is a family of hyperbolas

$$\frac{1}{2}y^2 - \frac{1}{2}x^2 = c_1,$$

and the second is a family of circles

$$\frac{1}{2}y^2 + \frac{1}{2}x^2 = c_2.$$

To transform the given equation to canonical form, we consider

$$\xi = \frac{1}{2}y^2 - \frac{1}{2}x^2$$
, $\eta = \frac{1}{2}y^2 + \frac{1}{2}x^2$.

From the relations (4.1.6), we have

$$u_{x} = u_{\xi}\xi_{x} + u_{\eta}\eta_{x} = -xu_{\xi} + xu_{\eta},$$

$$u_{y} = u_{\xi}\xi_{y} + u_{\eta}\eta_{y} = yu_{\xi} + yu_{\eta},$$

$$u_{xx} = u_{\xi\xi}\xi_{x}^{2} + 2u_{\xi\eta}\xi_{x}\eta_{x} + u_{\eta\eta}\eta_{x}^{2} + u_{\xi}\xi_{xx} + u_{\eta}\eta_{xx}$$

$$= x^{2}u_{\xi\xi} - 2x^{2}u_{\xi\eta} + x^{2}u_{\eta\eta} - u_{\xi} + u_{\eta}.$$

$$u_{yy} = u_{\xi\xi}\xi_{y}^{2} + 2u_{\xi\eta}\xi_{y}\eta_{y} + u_{\eta\eta}\eta_{y}^{2} + u_{\xi}\xi_{yy} + u_{\eta}\eta_{yy}$$

$$= y^{2}u_{\xi\xi} + 2y^{2}u_{\xi\eta} + y^{2}u_{\eta\eta} + u_{\xi} + u_{\eta}.$$

Thus, the given equation assumes the canonical form

$$u_{\xi\eta} = \frac{\eta}{2(\xi^2 - \eta^2)} u_{\xi} - \frac{\xi}{2(\xi^2 - \eta^2)} u_{\eta}.$$

Example 4.2.2. Consider the partial differential equation

$$x^2 u_{xx} + 2xy u_{xy} + y^2 u_{yy} = 0.$$

In this case, the discriminant is

$$B^2 - 4AC = 4x^2y^2 - 4x^2y^2 = 0.$$

The equation is therefore parabolic everywhere. The characteristic equation

$$\frac{dy}{dx} = \frac{y}{x},$$

and hence, the characteristics are

$$\frac{y}{x}=c,$$

which is the equation of a family of straight lines.

Consider the transformation

$$\xi = \frac{y}{x}, \quad \eta = y,$$

where η is chosen arbitrarily. The given equation is then reduced to the

$$y^2u_{\eta\eta}=0.$$

Thus,

$$u_{\eta\eta} = 0$$
 for $y \neq 0$.

Example 4.2.3. The equation

$$u_{xx} + x^2 u_{yy} = 0,$$

is elliptic everywhere except on the coordinate axis x = 0 because

$$B^2 - 4AC = -4x^2 < 0, \quad x \neq 0.$$

The characteristic equations are

$$\frac{dy}{dx} = ix, \qquad \frac{dy}{dx} = -ix.$$

Integration yields

$$2y - ix^2 = c_1, 2y + ix^2 = c_2.$$

Thus, if we write

$$\xi = 2y - ix^2, \qquad \eta = 2y + ix^2,$$

and hence,

$$\alpha = \frac{1}{2}(\xi + \eta) = 2y, \qquad \beta = \frac{1}{2i}(\xi - \eta) = -x^2,$$

we obtain the canonical form

$$u_{\alpha\alpha}+u_{\beta\beta}=-rac{1}{2eta}u_{eta}.$$

It should be remarked here that a given partial differential equation may be of a different type in a different domain. Thus, for example, Tricomi's equation

$$u_{xx} + xu_{yy} = 0, (4.2.16)$$

is elliptic for x > 0 and hyperbolic for x < 0, since $B^2 - 4AC = -4x$.